Deficiency symptoms Info

hexthat

Well-Known Member
I found this Here http://www.thctalk.com/cannabis-forum/archive/index.php/t-61246.html?s=6b2548ea798be3450db9ee4a485e57f5

Visual nutrient deficiency symptoms can be a very powerful diagnostic tool for evaluating the nutrient status of plants. One should keep in mind, however, that a given individual visual symptom is seldom sufficient to make a definitive diagnosis of a plant’s nutrient status. Many of the classic deficiency symptoms such as tip burn, chlorosis and necrosis are characteristically associated with more than one mineral deficiency and also with other stresses that by themselves are not diagnostic for any specific nutrient stress. However, their detection is extremely useful in making an evaluation of nutrient status. In addition to the actual observations of morphological and spectral symptoms, knowing the location and timing of these symptoms is a critical aspect of any nutrient status evaluation. Plants do not grow in isolation, they are part of the overall environment and as such they respond to environmental changes as that affect nutrient availability. Also, plants do influence their environment and can contribute to environmental changes, which in turn can affect the nutrient status of the plant.

Sources of Visual Symptoms
Stresses such as salinity, pathogens, and air pollution induce their own characteristic set of visual symptoms. Often, these symptoms closely resemble those of nutrient deficiency. Pathogens often produce an interveinal chlorosis, and air pollution and salinity stress can cause tip burn. Although at first these symptoms might seem similar in their general appearance to nutrient deficiency symptoms, they do differ in detail and/or in their overall developmental pattern. Pathological symptoms can often be separated from nutritional symptoms by their distribution in a population of affected plants. If the plants are under a nutrient stress, all plants of a given type and age in the same environment tend to develop similar symptoms at the same time. However if the stress is the result of pathology, the development of symptoms will have a tendency to vary between plants until a relatively advanced stage of the pathology is reached.

Environmental Associations
Plants remove substantial amounts of nutrients from the soil during their normal growth cycle and many long-term environmental changes occur as a result of this process. Effects on the soil go considerably beyond the straight removal or depletion of nutrients. Charge balance must be maintained in the plant-soil system during nutrient uptake. Charge balance is usually achieved by the excretion of proton and/or hydroxyl ions by the plant to replace the absorbed nutrient cations or anions. For example when plants are fertilized with ammonia, they acquire most of their nitrogen in the form of the ammonium cation, rather than from the usual nitrate anion. Because nitrate is the only anion used by the plant in large amounts, the net result of this change is that during normal nutrient uptake the proton excretion will far exceed that of hydroxyl ions. In the case of vigorously growing plants, the amount of excreted protons can be sufficiently large as to decrease the pH of the soil by several pH units. Changes in soil pH of such magnitude can have large implications for a number of soil processes such as soil structure, nutrient availability and leaching of nutrients. The immediate effect on the soil may be favorable for some plants, especially acid-loving plants, in that it tends to make iron more available. However, in the long run, lowering the soil pH can be deleterious to plants in that the availability of nutrients will change. A lower soil pH will allow micronutrients to be more readily leached from the soil profile, eventually resulting in deficiencies of nutrients such as Cu and Zn. Additionally, when the pH of the soil drops much below pH 5, the solubility of Al and Mn can increase to such an extent as to become toxic to most plant growth (see textbook Figure 5.5).
Plants are often thought of as passive in relation to the environment. However this is not always a valid assumption; for there are many plants that clearly manipulate their environment in a fashion that tends to makes certain nutrients more readily available. For example, iron is a limiting nutrient in many agricultural areas, but it comprises about 3% of the average soil which, if available, would be far in excess of the needs of the average plant. Some plants actively excrete protons, and the resulting decrease in pH increases the solubility of iron in their environment. In addition, other plants excrete phytosiderophores that chelate the soil iron rendering it a more available form for the plants (see p. 363 of the textbook).

Pathways of Symptom Development

At first glance, it would appear that the distinction of deficiency symptoms for the 13 known essential mineral nutrients should be relatively simple. But such an assumption is incorrect. In fact, the deficiency symptoms are quite complex because each nutrient has a number of different biological functions and each function may have an independent set of interactions with a wide range of environmental parameters. In addition, the expression of these symptoms varies for acute or chronic deficiency conditions. Acute deficiency occurs when a nutrient is suddenly no longer available to a rapidly growing plant. Chronic deficiency occurs when there is a limited but continuous supply of a nutrient, at a rate that is insufficient to meet the growth demands of the plant.
Most of the classic deficiency symptoms described in textbooks are characteristic of acute deficiencies. The most common symptoms of low-grade, chronic deficiencies are a tendency towards darker green leaves and stunted or slow growth. Typically most published descriptions of deficiency symptoms arise from experiments conducted in greenhouses or growth chambers where the plants are grown in hydroponics or in media where the nutrients are fully available. In these conditions, nutrients are readily available while present, but when a nutrient is depleted, the plant suddenly faces an acute deficiency. Thus, hydroponic studies favor the development of acute deficiencies.
In experiments designed to study micronutrient deficiency symptoms, micronutrients are usually omitted from the nutrient solution. Micronutrients are often present in the seed or as contaminants in the environment, so a plant of adequate size will exhaust these trace amounts of micronutrient and develop characteristic acute deficiency systems. When deficiency symptoms of macronutrients are sought, the macronutrient is removed suddenly from a suitable sized rapidly growing plant. Alternatively the plant can initially be given a one-time supply of the nutrient that is sufficient for a limited amount of growth. Because macronutrients are continuously required in relatively large amounts by rapidly growing plants, the available nutrients will be rapidly depleted, resulting in an acute deficiency.
In natural systems, the plant encounters many degrees and types of stresses that result in different types of symptoms occurring over time. Perhaps the most common nutrient deficiency in natural environments is the case of a limited nutrient supply that is continuously renewed at a low rate from soil weathering processes. In such cases, the limited nutrient availability results in chronic nutrient deficiency symptoms.
 

hexthat

Well-Known Member
Effect of Nutrient Mobility on Symptom Development
The interaction between nutrient mobility in the plant, and plant growth rate can be a major factor influencing the type and location of deficiency symptoms that develop. For very mobile nutrients such as nitrogen and potassium, deficiency symptoms develop predominantly in the older and mature leaves. This is a result of these nutrients being preferentially mobilized during times of nutrient stress from the older leaves to the newer leaves near the growing regions of the plant. Additionally, mobile nutrients newly acquired by the roots are also preferentially translocated to new leaves and the growing regions. Thus old and mature leaves are depleted of mobile nutrients during times of stress while the new leaves are maintained at a more favorable nutrient status.
The typical localization of deficiency symptoms of very weakly mobile nutrients such as calcium, boron, and iron is the opposite to that of the mobile nutrients; these deficiency symptoms are first displayed in the growing regions and new leaves while the old leaves remain in a favorable nutrient status. (This assumes that these plants started with sufficient nutrient, but ran out of nutrient as they developed). In plants growing very slowly for reasons other than nutrition (such as low light) a normally limiting supply of a nutrient could, under these conditions, be sufficient for the plant to slowly develop, maybe even without symptoms. This type of development is likely to occur in the case of weakly mobile nutrients because excess nutrients in the older leaves will eventually be mobilized to supply newly developing tissues. In contrast, a plant with a similar supply that is growing rapidly will develop severe deficiencies in the actively growing tissue such as leaf edges and the growing region of the plant. A classic example of this is calcium deficiency in vegetables such as lettuce where symptoms develop on the leaf margins (tip burn) and the growing region near the meristems. The maximal growth rate of lettuce is often limited by the internal translocation rate of calcium to the growing tissue rather than from a limited nutrient supply in the soil.
When moderately mobile nutrients such as sulfur and magnesium are the limiting nutrients of the system, deficiency symptoms are normally seen over the entire plant. However the growth rate and rate of nutrient availability can make a considerable difference on the locations at which the symptoms develop. If the nutrient supply is marginal compared to the growth rate, symptoms will appear on the older tissue, but if the nutrient supply is very low compared to the growth rate, or the nutrient is totally depleted, the younger tissue will become deficient first.

Plant Competition and Induced Deficiencies
When the observed symptoms are the direct result of a nutrient deficiency, the actions needed for correction are relatively straight-forward. However symptoms are often the result of interactions with other environmental factors limiting the availability of the nutrient whose symptoms are expressed. The classic instance is that of iron deficiency induced by an excess of heavy metals in the environment. Transition metals such as Cu, Zn Cr and Ni compete with Fe and each other for plant uptake. Competition for uptake is not specific to Fe and heavy metals but is true for all mineral nutrients that are chemically similar and have similar uptake mechanisms. For example if the availability of Cu or Zn is relatively less than that of Fe, then excessive concentrations of some other metal such as Ni or Cr will induce a deficiency of one of these nutrients rather than Fe. In the case of the macronutrients, excessive amounts of Mg will compete with K for uptake and can possibly induce a K deficiency. The barrenness of serpentine soils is the result of such competition, with the high Mg of these soils inducing a Ca deficiency. The toxicity of a low pH soil is another example of a basic nutrient deficiency. Low pH has a two-fold effect on soil nutrients: It enhances the leaching of cations, reducing their availability in the soil, and the relatively abundant protons in the soil compete with Ca and other cations for uptake. Thus, nutrient deficiencies can be induced by a number of different mechanisms often working in concert to limit the availability of a nutrient.

Nutrient Demand and Use Efficiency

Although all plants of the same species respond similarly to nutrient stress, plants of similar species will often show significant differences in their nutrient use efficiency. This results from differences in growth rate, root distribution, phase of development, and efficiency of nutrient uptake and utilization. This implies that in any given location, plants from one species may become nutrient-deficient, while those from another species growing in the same environment right next to them, may not show any deficiency symptoms.
Growth rate also affects nutrient status. When the nutrient supply is barely inadequate for growth under existing environmental conditions, many plants adjust their growth rate to match that supported by the available nutrient supply without displaying typical visual deficiency symptoms.
Agricultural systems differ from natural systems in that crop plants have been selected primarily for rapid growth under low stress conditions. This rapid growth rate results in a high nutrient demand by these plants and a higher incidence of nutrient deficiency unless supplemental fertilizers are supplied. It is not uncommon to find agricultural crops showing severe signs of nutrient stress, with native plants growing in the same area showing little or no indication of nutrient stress. In agriculture systems chronic deficiency symptoms develop mostly in crops with little or limited fertilization. Acute nutrient deficiency symptoms most often occur when new crops with a higher nutrient demand are introduced, or less productive lands are brought under cultivation for the production of rapidly growing crop plants.

Uniformity of Nutrient Status
Not all tissues of a plant are at the same nutrient status during times of stress. Leaves on the same plant that are exposed to different environmental conditions, (such as light), or those of different ages may have considerable differences in nutrient status. Mineral nutrients are for the most part acquired by the roots and translocated throughout the plant. The distance of any part of the plant to the roots will influence nutrient availability, particularly in the case of the less mobile nutrients. In plants recovering from nutrient deficiency, the root and conductive tissues recover first. For example, in the case of recovery from Fe deficiency, it is common to see the veins re-green while the interveinal tissue remains chlorotic and Fe-deficient.
In order to maintain rapid, optimal growth, all plant tissues must have a favorable nutrient status. Although a plant may be marginally low in a number of nutrients, only one nutrient at a time will limit overall growth. However, if the supply of that limiting nutrient is increased even slightly, the resulting increase in growth will increase the demand for all other nutrients and another nutrient, the next lowest in availability, will become limiting.

Other Diagnostic Tools
Although visual diagnostic symptoms are an extremely valuable tool for the rapid evaluation of the nutrient status of a plant, they are only some of the tools available. Other major tools include microscopic studies, spectral analysis, and tissue and soil analysis. These methods all vary in their precision, rapidity and their ability to predict future nutrient status. Because of the close interaction between plant growth and the environment, all predictions of future nutrient status must make assumptions about how the environment will change in that time frame.
The principle advantage of visual diagnostic symptoms is that they are readily obtained and provide an immediate evaluation of nutrient status. Their main drawback is that the visual symptoms do not develop until after there has been a major effect on yield, growth and development.
Tissue analysis is nutrient-specific but relatively slow; tissues must be sampled, processed, and analyzed before the nutrient status can be determined. An analysis of the mineral nutrient content of selected plants tissues, when compared against Critical Level values (which are available for most crop plants, see textbook Figure 5.4), can be used to evaluate the plant nutrient status at the time of sampling with a relatively high degree of confidence and can be extrapolated to project nutrient status at harvest. Soil analysis is similar to tissue analysis but evaluates the potential supplying power of the soil instead of plant nutrient status. Plant analysis provides information as to what the plant needs, while soil analysis provides information about the status of the nutrient supply.
Spectral analysis of nutrient status is still in its infancy and is presently used primarily in the inventory of global resources and in specialized studies. Microscopic studies are most valuable in looking at the physiological aspects of nutrient stress rather than the evaluation of plant nutrient status on a whole plant or crop basis.
 

hexthat

Well-Known Member
Symptom Descriptions
It is unusual to find any one leaf or even one plant that displays the full array of symptoms that are characteristic of a given deficiency. It is thus highly desirable to know how individual symptoms look, for it is possible for them to occur in many possible combinations on a single plant. Most of the terms used below in the description of deficiency symptoms are reasonably self evident; a few however have a distinct meaning in the nutrient deficiency field. For example, the term chlorotic, which is a general term for yellowing of leaves through the loss of chlorophyll, cannot be used without further qualification because there may be an overall chlorosis as in nitrogen deficiency, interveinal, as in iron deficiency, or marginal, as in calcium deficiency. Another term used frequently in the description of deficiency symptoms is necrotic, a general term for brown, dead tissue. This symptom can also appear in many varied forms, as is the case with chlorotic symptoms.
Nutrient deficiency symptoms for many plants are similar, but because of the large diversity found in plants and their environments there is a range of expression of symptoms. Because of their parallel veins, grasses and other monocots generally display the affects of chlorosis as a series of stripes rather than the netted interveinal chlorosis commonly found in dicots. The other major difference is that the marginal necrosis or chlorosis found in dicots is often expressed as tip burn in monocots.
 
Top