Plant Hormone Growth Regulators Info

Medi 1

Well-Known Member
Just some info from the web i put together.



Auxins

Auxins are compounds that positively influence cell enlargement, bud formation and root initiation. They also promote the production of other hormones and in conjunction with cytokins, they control the growth of stems, roots, and fruits, and convert stems into flowers. Auxins were the first class of growth regulators discovered. They affect cell elongation by altering cell wall plasticity. Auxins decrease in light and increase where it is dark. They stimulate cambium cells to divide and in stems cause secondary xylem to differentiate. Auxins act to inhibit the growth of buds lower down the stems (apical dominance), and also to promote lateral and adventitious root development and growth. Leaf abscission is initiated by the growing point of a plant ceasing to produce auxins. Auxins in seeds regulate specific protein synthesis, as they develop within the flower after pollination, causing the flower to develop a fruit to contain the developing seeds. Auxins are toxic to plants in large concentrations; they are most toxic to dicots and less so to monocots. Because of this property, synthetic auxin herbicides including 2,4-D and 2,4,5-T have been developed and used for weed control. Auxins, especially 1-Naphthaleneacetic acid (NAA) and Indole-3-butyric acid (IBA), are also commonly applied to stimulate root growth when taking cuttings of plants. The most common auxin found in plants is indoleacetic acid or IAA. The correlation of auxins and cytokinins in the plants is a constant



Cytokinins

Cytokinins or CKs are a group of chemicals that influence cell division and shoot formation. They were called kinins in the past when the first cytokinins were isolated from yeast cells. They also help delay senescence or the aging of tissues, are responsible for mediating auxin transport throughout the plant, and affect internodal length and leaf growth. They have a highly synergistic effect in concert with auxins and the ratios of these two groups of plant hormones affect most major growth periods during a plant's lifetime. Cytokinins counter the apical dominance induced by auxins; they in conjunction with ethylene promote abscission of leaves, flower parts and fruits. The correlation of auxins and cytokinins in the plants is a constant

Ethylene

Ethylene is a gas that forms through the Yang Cycle from the breakdown of methionine, which is in all cells. Ethylene has very limited solubility in water and does not accumulate within the cell but diffuses out of the cell and escapes out of the plant. Its effectiveness as a plant hormone is dependent on its rate of production versus its rate of escaping into the atmosphere. Ethylene is produced at a faster rate in rapidly growing and dividing cells, especially in darkness. New growth and newly germinated seedlings produce more ethylene than can escape the plant, which leads to elevated amounts of ethylene, inhibiting leaf expansion. As the new shoot is exposed to light, reactions by phytochrome in the plant's cells produce a signal for ethylene production to decrease, allowing leaf expansion. Ethylene affects cell growth and cell shape; when a growing shoot hits an obstacle while underground, ethylene production greatly increases, preventing cell elongation and causing the stem to swell. The resulting thicker stem can exert more pressure against the object impeding its path to the surface. If the shoot does not reach the surface and the ethylene stimulus becomes prolonged, it affects the stems natural geotropic response, which is to grow upright, allowing it to grow around an object. Studies seem to indicate that ethylene affects stem diameter and height: When stems of trees are subjected to wind, causing lateral stress, greater ethylene production occurs, resulting in thicker, more sturdy tree trunks and branches. Ethylene affects fruit-ripening: Normally, when the seeds are mature, ethylene production increases and builds-up within the fruit, resulting in a climacteric event just before seed dispersal. The nuclear protein Ethylene Insensitive2 (EIN2) is regulated by ethylene production, and, in turn, regulates other hormones including ABA and stress hormones




Gibberellins

Gibberellins, or GAs, include a large range of chemicals that are produced naturally within plants and by fungi. They were first discovered when Japanese researchers, including Eiichi Kurosawa, noticed a chemical produced by a fungus called Gibberella fujikuroi that produced abnormal growth in rice plants. Gibberellins are important in seed germination, affecting enzyme production that mobilizes food production used for growth of new cells. This is done by modulating chromosomal transcription. In grain (rice, wheat, corn, etc.) seeds, a layer of cells called the aleurone layer wraps around the endosperm tissue. Absoption of water by the seed causes production of GA. The GA is transported to the aleurone layer, which responds by producing enzymes that break down stored food reserves within the endosperm, which are utilized by the growing seedling. GAs produce bolting of rosette-forming plants, increasing internodal length. They promote flowering, cellular division, and in seeds growth after germination. Gibberellins also reverse the inhibition of shoot growth and dormancy induced by ABA



Other known hormones



Other identified plant growth regulators include:
  • Brassinosteroids, are a class of polyhydroxysteroids, a group of plant growth regulators. Brassinosteroids have been recognized as a sixth class of plant hormones which stimulate cell elongation and division, gravitropism, resistance to stress and xylem differentiation. They inhibit root growth and leaf abscission. Brassinolide was the first identified brassinosteroid and was isolated from organic extracts of rapeseed (Brassica napus) pollen in 1970.
  • Salicylic acid - activates genes in some plants that produce chemicals that aid in the defense against pathogenic invaders.
  • Jasmonates - are produced from fatty acids and seem to promote the production of defense proteins that are used to fend off invading organisms. They are believed to also have a role in seed germination, and affect the storage of protein in seeds, and seem to affect root growth.
  • Plant peptide hormones - encompasses all small secreted peptides that are involved in cell-to-cell signaling. These small peptide hormones play crucial roles in plant growth and development, including defense mechanisms, the control of cell division and expansion, and pollen self-incompatibility .
  • Polyamines - are strongly basic molecules with low molecular weight that have been found in all organisms studied thus far. They are essential for plant growth and development and affect the process of mitosis and meiosis.
  • Nitric oxide (NO) - serves as signal in hormonal and defense responses.
Strigolactons, implicated in the inhibition of shoot branching.

Karrikines, a group of plant growth regulators found in the smoke of burning plant material that have the ability to stimulate the germination of seeds



Hormones and plant propagation

Synthetic plant hormones or PGRs are commonly used in a number of different techniques involving plant propagation from cuttings, grafting, micropropagation, and tissue culture.
The propagation of plants by cuttings of fully developed leaves, stems, or roots is performed by gardeners utilizing auxin as a rooting compound applied to the cut surface; the auxins are taken into the plant and promote root initiation. In grafting, auxin promotes callus tissue formation, which joins the surfaces of the graft together. In micropropagation, different PGRs are used to promote multiplication and then rooting of new plantlets. In the tissue-culturing of plant cells, PGRs are used to produce callus growth, multiplication, and rooting.

Seed dormancy

Plant hormones affect seed germinations and dormancy by affecting different parts of the seed.
Embryo dormancy is characterized by a high ABA/GA ratio, whereas the seed has a high ABA sensitivity and low GA sensitivity. To release the seed from this type of dormancy and initiate seed germination, an alteration in hormone biosynthesis and degradation towards a low ABA/GA ratio, along with a decrease in ABA sensitivity and an increase in GA sensitivity needs to occur.
ABA controls embryo dormancy, and GA embryo germination. Seed coat dormancy involves the mechanical restriction of the seed coat, this along with a low embryo growth potential, effectively produces seed dormancy. GA releases this dormancy by increasing the embryo growth potential, and/or weakening the seed coat so the radical of the seedling can break through the seed coat. Different types of seed coats can be made up of living or dead cells and both types can be influenced by hormones; those composed of living cells are acted upon after seed formation while the seed coats composed of dead cells can be influenced by hormones during the formation of the seed coat. ABA affects testa or seed coat growth characteristics, including thickness, and effects the GA-mediated embryo growth potential. These conditions and effects occur during the formation of the seed, often in response to environmental conditions. Hormones also mediate endosperm dormancy: Endosperm in most seeds is composed of living tissue that can actively respond to hormones generated by the embryo. The endosperm often acts as a barrier to seed germination, playing a part in seed coat dormancy or in the germination process. Living cells respond to and also affect the ABA/GA ratio, and mediate cellular sensitivity; GA thus increases the embryo growth potential and can promote endosperm weakening. GA also affects both ABA-independent and ABA-inhibiting processes within the endosperm





 
Top